About me
Aravind Chandrasekaran
CV
My research focuses on employing inter-disciplinary computational approaches to understand how mechanical and chemical properties of biological materials are tuned to enable specific functional goals in living systems. Examples include dynamic biological patterns of self-assembly in actin bundles, and signal-cytoskeleton relationship in growing axons.
Employment
- Post-doctoral fellow, Rangamani Lab (August, 2021 – present)
Education
- Ph.D. Chemistry, University of Maryland, College Park (2014-2021)
- Thesis Advisor: Garegin A. Papoian
- M.Sc. Bioinformtics and Structural Biology, National Tsing Hua University, Taiwan (2012-2014)
- Thesis Advisor: Dr. Lee-Wei Yang
- B.Tech. Chemical Engineering, Anna University, Chennai, India (2007-2011)
Selected Honors and Awards
- Dean’s Fellowship, University of Maryland, 2014-15, 2015-16, and 2019-2020
- International Student Scholarship, National Tsing Hua University, 2012-13, and 2013-14
Publications
- Chandrasekaran, A., Graham, G., Stachowiak, J.C., Rangamani, P. (2024). Kinetic trapping organizes actin filaments within liquid-like protein droplets., bioRχiv, 10.1101/2023.05.26.542517
- Graham, G., Chandrasekaran, A., Wang, L., Ladak, A., Lafer, E.M., Rangamani, P., Stachowiak, J.C. (2024). Liquid-like condensates mediate competition between actin branching and bundling., PNAS, 121(3), e2309152121
- Forghani, R., Chandrasekaran, A., Papoian, G. A., and Giniger, E. (2023). A new view of axon growth and guidance grounded in the stochastic dynamics of actin networks., Open Biology, 13: 220359
- Fang, H.Y., Forghani, R., Clarke, A., McQueen, P., Chandrasekaran, A., O’Neil, K., Losert, W., Papoian, G. A., and Giniger, E. (2023). Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila., Mol. Biol. of the Cell, 34(8), 34:ar83, 1 (IF - 4.0)
- Graham, K., Chandrasekaran, A., Wang, L., Ladak, A., Lafer, E. M., Rangamani, P., Stachowiak, J. C., (2023) Liquid-like VASP condensates drive actin polymerization and dynamic bundling. Nat. Phys., 19, pages574–585
- Chandrasekaran, A., Clarke, A., McQueen, P., Fang, H.Y., Papoian, G. A., and Giniger, E. (2022) Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol. Biol. of the Cell, 33:ar92, 1
- Chandrasekaran, A., Papoian, G. A., and Giniger, E. (2022). Nucleation causes an actin network to fragment into multiple high-density domains. Biophys. J., 121(17), P3200
- Ciocanel, M.-V.,Chandrasekaran, A., Mager, C., Ni, Q., Papoian, G. A., Dawes, A. (2022). Simulated actin reorganization mediated by motor proteins. PLOS Comput. Biol., 18(4), e1010026
- C Floyd, Chandrasekaran, A., H Ni, Q Ni, GA Papoian (2021) Segmental Lennard-Jones interactions for semi-flexible polymer networks, Molecular Physics, e1910358.) preprint
- Chandrasekaran, A., Upadhyaya, A., and Papoian, G. A. (2019) Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling. PLOS Comput. Biol., 15(7) e1007156
- Chandrasekaran, A., Chan, J., Lim, C., and Yang, L. W. (2016) Protein Dynamics and Contact Topology Reveal Protein-DNA Binding Orientation. J. Chem. Theory Comput., 12, 5269
- Li, H., Sakuraba, S., Chandrasekaran, A., and Yang, L. W. (2014) Molecular binding sites are located near the interface of intrinsic dynamics domains (IDDs). J. Chem. Inf. Model., 54, 2275
- Chandrasekaran, A. and Jain, S. R. (2012) Kac’s ring: Entropy and Poincar´e recurrence. Phys. A Stat. Mech. and its Appl., 391, 3702