Aravind Chandrasekaran

About me

Aravind Chandrasekaran

CV

My research focuses on employing inter-disciplinary computational approaches to understand how mechanical and chemical properties of biological materials are tuned to enable specific functional goals in living systems. Examples include dynamic biological patterns of self-assembly in actin bundles, and signal-cytoskeleton relationship in growing axons.

Employment

Education

  • Ph.D. Chemistry, University of Maryland, College Park (2014-2021)
  • M.Sc. Bioinformtics and Structural Biology, National Tsing Hua University, Taiwan (2012-2014)
  • B.Tech. Chemical Engineering, Anna University, Chennai, India (2007-2011)

Selected Honors and Awards

  • Dean’s Fellowship, University of Maryland, 2014-15, 2015-16, and 2019-2020
  • International Student Scholarship, National Tsing Hua University, 2012-13, and 2013-14

Publications

  1. Chandrasekaran, A., Graham, G., Stachowiak, J.C., Rangamani, P. (2024). Kinetic trapping organizes actin filaments within liquid-like protein droplets., bioRχiv, 10.1101/2023.05.26.542517
  2. Graham, G., Chandrasekaran, A., Wang, L., Ladak, A., Lafer, E.M., Rangamani, P., Stachowiak, J.C. (2024). Liquid-like condensates mediate competition between actin branching and bundling., PNAS, 121(3), e2309152121
  3. Forghani, R., Chandrasekaran, A., Papoian, G. A., and Giniger, E. (2023). A new view of axon growth and guidance grounded in the stochastic dynamics of actin networks., Open Biology, 13: 220359
  4. Fang, H.Y., Forghani, R., Clarke, A., McQueen, P., Chandrasekaran, A., O’Neil, K., Losert, W., Papoian, G. A., and Giniger, E. (2023). Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila., Mol. Biol. of the Cell, 34(8), 34:ar83, 1 (IF - 4.0)
  5. Graham, K., Chandrasekaran, A., Wang, L., Ladak, A., Lafer, E. M., Rangamani, P., Stachowiak, J. C., (2023) Liquid-like VASP condensates drive actin polymerization and dynamic bundling. Nat. Phys., 19, pages574–585
  6. Chandrasekaran, A., Clarke, A., McQueen, P., Fang, H.Y., Papoian, G. A., and Giniger, E. (2022) Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol. Biol. of the Cell, 33:ar92, 1
  7. Chandrasekaran, A., Papoian, G. A., and Giniger, E. (2022). Nucleation causes an actin network to fragment into multiple high-density domains. Biophys. J., 121(17), P3200
  8. Ciocanel, M.-V.,Chandrasekaran, A., Mager, C., Ni, Q., Papoian, G. A., Dawes, A. (2022). Simulated actin reorganization mediated by motor proteins. PLOS Comput. Biol., 18(4), e1010026
  9. C Floyd, Chandrasekaran, A., H Ni, Q Ni, GA Papoian (2021) Segmental Lennard-Jones interactions for semi-flexible polymer networks, Molecular Physics, e1910358.) preprint
  10. Chandrasekaran, A., Upadhyaya, A., and Papoian, G. A. (2019) Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling. PLOS Comput. Biol., 15(7) e1007156
  11. Chandrasekaran, A., Chan, J., Lim, C., and Yang, L. W. (2016) Protein Dynamics and Contact Topology Reveal Protein-DNA Binding Orientation. J. Chem. Theory Comput., 12, 5269
  12. Li, H., Sakuraba, S., Chandrasekaran, A., and Yang, L. W. (2014) Molecular binding sites are located near the interface of intrinsic dynamics domains (IDDs). J. Chem. Inf. Model., 54, 2275
  13. Chandrasekaran, A. and Jain, S. R. (2012) Kac’s ring: Entropy and Poincar´e recurrence. Phys. A Stat. Mech. and its Appl., 391, 3702

This project is maintained by achansek